The biological implications of meditation practices in the treatment of depression

Major depressive disorder (MDD) is a common mood disorder and a great cause of disability worldwide. Biological factors implicated in MDD range from neural imbalances to signaling dysregulations (which are partly grounded in genetic predispositions).

As shown in Figure 1, the socio-cognitive and biological deficiencies involved in MDD appear to influence each other in a circular, perpetuating manner. These deficiencies can be categorized into six non-exhaustive broad factors, i.e., mood, executive functioning, social skills, neuroplasticity, neural core networks, and neuroendocrine and neuroimmunological factors. The modulation of one factor is expected to exert an effect over the other factors, and subsequently to affect the overall depressive symptomology. Importantly, although these factors seem to play a causal role in the symptoms of MDD to various degrees, the precise causes of depression have not yet been entirely determined. There are, for instance, other psychological (e.g. cognitive biases) and biological factors (e.g. serotonin transporter genotype) that are known to be involved in depression, however these will not be covered in this article.

FIGURE 1 | A model of psychological and biological deficiencies associated with major depressive disorder; rounded square-shaped box, deficient factor(s); oval- shaped box, mediating factor(s); white box, psychological factor; gray box, biological factor; arrow, unidirectional influence; BDNF, brain-derived neurotrophic factor. Taken from Heuschkel and Kuypers (2020)

Particularly impaired in individuals with MDD is neuroplasticity, a crucial neural mechanism that entails structural and functional brain adaptations in response to altered environmental circumstances. This impairment is generally indicated by abnormally low levels of the brain-derived neurotrophic factor (BDNF), which is related to hippocampal and prefrontal atrophy in MDD. Moreover, impairments in stress regulation and immune system functioning have also been associated with the development of MDD symptoms. The following paragraphs describe in more detail the roles of BDNF, as well as those of cortisol, as a marker of stress, and of inflammatory cytokines in mental health, with a focus on depression.

BDNF is an important neurotrophin which promotes neuronal development, survival and plasticity in the central and peripheral nervous systems. It is most active in brain areas that play a role in learning, memory and higher cognition, such as the hippocampus and cortex. BDNF is also pivotal in the regulation of several physiological aspects, including stress response, mood, inflammation and metabolism. Decreases in BDNF levels have been linked to psychiatric and neurological disorders, such as depression, anxiety and Alzheimer’s disease.

Cortisol is a glucocorticoid secreted by the adrenal glands and, as part of the hypothalamic-adrenal-pituitary (HPA) axis, is a reliable marker for stress response. Cortisol is also part of the feedback mechanism in the immune system, where its role is to reduce certain aspects of the immune function, such as inflammation. Moreover, this hormone follows a robust circadian rhythm, which peaks 30 min after awakening, termed the Cortisol Awakening Response—CAR, and gradually declines throughout the day.  

The circulating pro-inflammatory cytokines Interferon Gamma (IFN-γ), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-12 (IL-12) and Tumor Necrosis Factor (TNF-α), as well as the anti-inflammatory cytokine Interleukin-10 (IL-10) have been extensively investigated over the past 20 years for their roles in depression, anxiety and various other chronic medical illnesses. Typically, decreases in inflammatory pathway activation during periods without active infection are associated with better physical and mental well-being. That being said, a general decrease in pro-inflammatory (and increase in anti-inflammatory) immune mediators is not necessarily indicative of health and wellness, since acute inflammatory responses are known to be adaptive; instead, a healthy homeostatic balance between pro- and anti-inflammatory signaling is most beneficial. Moreover, chronic inflammatory states can be triggered through psychosocial stress.

The deficits within these factors result in profound impairments in daily functioning, reduced quality of life, an increased risk of suicide, and a substantial lack of productivity. It is clear that there is a dire need to come up with alternative treatments for depression, next to the conventional first-line psycho- and pharmaco-therapies. One such alternative therapeutic strategy is meditation.

How meditation can alleviate the symptoms of depression ~ a biological standpoint

Mindfulness meditation is already being used in certain mental health facilities under different forms of psychotherapeutic intervensions, such as mindfulness-based stress reduction (MBSR) and mindfulness-based cognitive therapy (MBCT). These usually consist of sessions guided by a professional in addition to at-home practice, over a duration of several weeks. While MBSR is tailored to the management of stressful situations, MBCT involves strategies for dealing with maladaptive thought patterns, which makes it more suitable for the prevention of depressive relapse. Upon repeated training, mindfulness meditation can lead to relatively global cognition-enhancing effects, as shown in Figure 2.

FIGURE 2 | A model of possible effects of mindfulness meditation on psychological and biological deficiencies associated with major depressive disorder; rounded square-shaped box, deficient factor(s) in depression; arrow-shaped box, unidirectional effect; white box, psychological factor/ effect; gray box, biological factor/effect; black arrow, interdependence; BDNF, brain-derived neurotrophic factor.
Adapted from Heuschkel and Kuypers (2020)

Meditative practices based on stress-reduction mechanisms and psychophysiological self-regulation are associated with anti-inflammatory benefits, through their modulation of inflammatory and HPA axis activities. In a study by Cahn et al. (2017), thirty-eight individuals participated in a 3-month yoga and meditation retreat, and were assessed before and after the intervention for psychometric measures, BDNF levels, circadian salivary cortisol levels, and pro- and anti-inflammatory cytokines. Participation in this yoga and meditation retreat was associated with better coping with stress, also known as stress resilience, as well as decreased self-reported depression, increased mindfulness, and generally enhanced well-being. The plasma levels of BDNF were increased by three fold post-retreat compared to pre-retreat, and this increase was inversely correlated with participants’ self-reported anxiety levels on a questionnaire (the Brief Symptom Inventory-18, BSI-18). In addition, the CAR levels were also significantly higher in these participants after the retreat, indicating improvements in the dynamic rhythmicity of the HPA axis activity, which is a marker of better stress resilience.

The researchers also found an unusual pattern of increases in both anti-inflammatory IL-10 as well as pro-inflammatory TNF-α, IFN-γ, IL-1β, IL-6, IL-8, with simultaneous decreases in the pro-inflammatory IL-12. While overall there are inconsistencies across studies on the influence of meditative practices on the immune system, it is also important to bear in mind that these studies tend to differ with respect to the type of intervention (e.g., Kundalini yoga vs. MBSR vs. Tai Chi), population (e.g., clinical vs. non-clinical), setting, design and other methodological factors; these differences lead to complexities involved in interpreting cytokine and other biomarker samples.

Having said that, pro- and anti-inflammatory response modulations may be adaptive depending on the context, for instance in chronically inflamed body states versus non-inflamed healthy normals. It is likely that in relatively healthy adults, intense yogic and meditative practices recruit an integrate brain-body response, resulting in enhanced pro- and anti-inflammatory signaling processes, which on the one hand support an upregulated vigorous immunological surveillance system, while on the other hand concomitantly promote high expression of the anti-inflammatory ‘‘break’’ such as IL-10.

Overall, the biological findings in the above-mentioned study correlate with enhanced stress resilience and well-being. At the end of an intensive three-month yoga-meditation retreat, the increased BDNF signaling and increased CAR were likely related to improved neurogenesis and/or neuroplasticity, and to enhanced alertness and readiness for mind-body engagement, respectively, while the higher levels of anti- and pro-inflammatory cytokines suggested better immunological readiness. Further research should attempt to investigate the role of other contextual factors (e.g., social dynamics, diet, natural environment, relative impact of a revered spiritual teacher etc.) impacting the expression and regulation of these biological processes.

To conclude, it is evident that meditation exerts beneficial effects on the brain. Particularly important to mental disorders, when meditation is used as a therapeutic intervention, it contributes to improving mental states and cognitive abilities by influencing several key biological factors crucial for normal brain functioning.

References

  • Cahn, B.R., Goodman, M.S., Peterson, C.T., Maturi, R., Mills, P.J. (2017). Yoga, Meditation and Mind-Body Health: Increased BDNF, Cortisol Awakening Response, and Altered Inflammatory Marker Expression after a 3-Month Yoga and Meditation Retreat. Front Hum Neurosci, 11:315. doi: 10.3389/fnhum.2017.00315
  • Dutta, A., McKie, S., Downey, D. et al. (2019). Regional default mode network connectivity in major depressive disorder: modulation by acute intravenous citalopram. Transl Psychiatry 9, 116. doi: org/10.1038/s41398-019-0447-0
  • Heuschkel, K., & Kuypers, K.P.C. (2020). Depression, Mindfulness, and Psilocybin: Possible Complementary Effects of Mindfulness Meditation and Psilocybin in the Treatment of Depression. A Review. Front. Psychiatry, 11:224. doi: 10.3389/fpsyt.2020.00224
  • Zeidan, F., Johnson, S., Diamond, B., David, Z., & Goolkasian, P. (2010). Mindfulness meditation improves cognition: Evidence of brief mental training. Consciousness and Cognition, 19, 597-605. doi: org/10.1016/j.concog.2010.03.014

The biology of meditation. How meditating can change your brain

Many of us are already familiar with what it means to meditate, in a broad sense, and we have often heard that meditation can improve our lives. Several books and articles have been written on the positive effects exerted by meditation on our bodies and minds. But what is the nature of meditation and how can it help us improve our mental states? More specifically, what happens at the level of neural networks, brain cells and molecules that results in all these beneficial actions upon meditating?

This being human is a guest house. Every morning a new arrival. A joy, a depression, a meanness, some momentary awareness comes as an unexpected visitor. Welcome and entertain them all! […] The dark thought, the shame, the malice. Meet them at the door laughing and invite them in. Be grateful for whatever comes. Because each has been sent as a guide from beyond.

The Guest House by Rumi. Translation by Coleman Barks

FIGURE 1 |Sigiriya rock located near the Dambulla town, in the Central Province, Sri Lanka. Own image.

An introduction to meditation ~ its styles and purposes

Meditation encompasses various emotional and attentional regulatory practices, which aim at improving an individual’s cognitive abilities. Many recent behavioral, electroencephalographic and neuroimaging studies have investigated the neuronal events related to meditation, in order to achieve an increased understanding of cognitive and affective neuroplasticity, attention and self-awareness, as well as for their possible clinical implications.

The video below shows the kind of brain changes meditation leads to, in a monk who is a long-term practitioner.

According to Raffone and Sirivasan (2010), a central feature of meditation is the regulation of attention, and as such, meditation practices can be classified into two main styles—focused attention (FA) and open monitoring (OM)—depending on how attentional processes are directed. While the FA (‘concentrative’) style is based on focusing attention on a given object in a sustained manner, the second style, OM (‘mindfulness-based’) meditation, involves the non-reactive monitoring of the content of ongoing experience. More specifically, mindfulness refers to being constantly aware of the way we perceive and monitor all mental processes, including perceptions, sensations, cognitions and affects.

FA meditation techniques imply, apart from sustaining the attention on an intended object, monitoring attentional focus, detecting distraction, disengaging attention from the source of distraction, and (re)directing attention (back) on the object. This kind of attentional stability and vividness is achieved through concentrated calmness or serene attention, denoted by the word Samatha (which literarily means quiescence) in the Buddhist contemplative tradition. Another technique which can be broadly included in the FA meditation is transcendental meditation, which centers on the repetition of a mantra.

Unlike FA meditation, OM meditation does not involve an explicit attentional focus, and therefore does not seem to be associated with brain areas that control sustained or focused attention. Instead, OM meditation engages brain regions implicated in vigilance, monitoring and detachment of attention from sources of distraction from the ongoing stream of experience. Therefore, OM meditation is based on detecting arising sensations and thoughts within an unrestricted ‘background’ of awareness, without a ‘grasping’ of these events in an explicitly selected focus. In the transition from a FA to an OM meditative state, the object as the primary focus is gradually replaced by an ‘effortless’ sustaining of an open background of awareness, without an explicit attentional selection. In the Buddhist tradition, the practice of Vipassana (insight) OM meditation requires, first of all, attentional stability and vividness (acuity), as developed in FA meditation, in order to achieve a deep and reliable introspection.

The ancient yogic practice of Yoga Nidra, which is less-known, and yet is becoming increasingly popular, can also fall into the category of OM meditation. It is said to reduce stress and improve sleep, and that it has the potential to engender a profound sense of joy and well-being.

Another type of OM meditation worth mentioning here is the loving-kindness meditation or non-referential compassion (also known as Mettā in the Pali language), which involves compassion-based mental training aimed at promoting empathy. Practicing this kind of meditation is believed to increase the capacity for forgiveness, connection to others and self-acceptance, and to boost well-being and reduce stress. For more detailed descriptions as well as a deeper and broader understanding of the neurological implications of these different meditation practices, I strongly encourage you to check out the reviews listed in the Reference section, especially Brandmeyer et al. (2019) and Raffone & Srinivasan (2010).

Of all these different kinds, mindfulness meditation, which originally stems from Buddhist meditation traditions, has received the most attention in neuroscience research over the last twenty years.

Research over the past two decades broadly supports the claim that mindfulness meditation — practiced widely for the reduction of stress and promotion of health — exerts beneficial effects on physical and mental health, and cognitive performance. 

Tang et al. (2015)

Sustained engagement with mindfulness meditative practices has been shown to have neurophysiological and psychological benefits. In healthy individuals, several months of mindfulness meditation practice correlates with improvements in self-regulation and subjective well-being. Even much shorter mindfulness meditation training, of a few days, has a positive impact on mood and executive functioning, while at the same time reducing fatigue and anxiety.

Brain structural changes following mindfulness meditation

Several recent studies have investigated the structural changes in the brain related to mindfulness meditation, and have reported alterations in cortical thickness, hippocampal volume, and grey-matter volume and/or density. However, before we dive into how meditation can change our brains, it should be mentioned that there are a few issues with the current state of meditation research. First of all, most of these studies have made cross-sectional comparisons between experienced meditators and controls. But only a few recent studies have investigated longitudinal changes in novice practitioners. These logitudinal studies are very important because they follow subjects over a long-term period of practice, and are thus able to determine whether changes induced by meditation training persist in the absence of continued practice. Therefore, more such studies would be required for a complete picture of the effects of meditation on mental health.

In addition, the studies on mindfulness meditation so far have generally included small sample sizes, of between 10 and 34 subjects per group, which leads to limitations in interpreting the results, as well as increases the chances of false-positives. Another prossible issue is that these studies use different research designs, measurements and type of mindfulness meditation. Hence, it comes as no surprise that the reported effects of meditation are diverse and cover multiple regions in the brain, including the cerebral cortex, subcortical grey and white matter, brain stem and cerebellum. That being said, these findings can also reflect the fact that the effects of meditation involve large-scale and interactive brain networks.

According to various fMRI studies, minfulness meditation exerts its effects primarily (though not exclusively) on a network of brain regions – the Default Mode Network (DMN). This network comprises structures in the medial prefrontal cortex (PFC), posterior cingulate cortex (PCC), anterior precuneus and inferior parietal lobule, which have been previously shown to have high activity during rest, mind wandering and conditions of stimulus-independent thought. These regions have been suggested to support different mechanisms by which an individual can ‘project’ themselves into another perspective.

When comparing meditators with naïve subjects, DMN regions, such as the medial PFC and PCC, have shown much less activity in meditators, across different types of meditation. This has been interpreted as indicating diminished self-referential processing. Experienced meditators also seem to exert stronger coupling between the PCC, dorsal anterior cingulate cortex (ACC) and dorsolateral PFC, both at baseline and during meditation, which indicates stronger cognitive control over the function of the DMN.

Brewer et al. (2011) investigated brain activity in experienced meditators versus meditation-naïve controls as they performed several different mindfulness meditations (Concentration, Loving-Kindness, Choiceless Awareness). They found that the main nodes of the DNM (medial PFC and PCC) were relatively deactivated in experienced meditators across all meditation types (Figure 2). Moreover, functional connectivity analysis revealed increased coupling in experienced meditators between the PCC, dorsal ACC, and dorsolateral prefrontal cortices, both at baseline and during meditation, as seen in Figure 3. This increased connectivity with medial PFC regions supports greater access of the default circuitry to information about internal states, because this region is also highly interconnected with limbic regions (such as insula and amygdala).

FIGURE 2 | Experienced meditators demonstrate decreased DMN activation during different meditation conditions: Choiceless Awareness (green bars), Loving-Kindness (red), and Concentration (blue) meditations. The decreased activation in PCC in meditators is common across different meditation types. Brain activation in meditators > controls is shown, collapsed across all meditations, relative to baseline (A and B). Activations in the left mPFC and PCC (C and D). Taken from Brewer et al. (2011)

FIGURE 3 | Experienced meditators show coactivation of mPFC, insula, and temporal lobes during meditation. Differential functional connectivity with mPFC seed region and left posterior insula is shown in meditators > controls: (A) at baseline and (B) during meditation. (C) Connectivity z-scores (±SD) are shown for left posterior insula. Choiceless Awareness (green bars), Loving-Kindness (red), and Concentration (blue) meditation conditions. Taken from Brewer et al. (2011)

Meditators also reported significantly less mind-wandering, which has been previously associated with activity in the DMN. Therefore, these results demonstrated that alterations in the DMN are related to reduction in mind-wandering. They also suggested that meditation practice may transform the resting-state experience into one that resembles a meditative state – a more present-centered default mode.

The findings from this study have several clinical implications, given that a number of pathological conditions have been associated with dysfunction within areas of the DMN, including depression. The self-referrential function of the DMN has pointed to the possibility that excessive rumination (negative inner preoccupation about the personal past, present and future) in depression involves excessive DMN activity as well as an inability to switch out of it, in response to external demands. Mindfulness meditation may prove useful in reducing distractive and ruminative thoughts and behaviors, and this ability may provide a unique mechanism by which mindfulness meditation reduces distress and improves mood.

In addition, meditation has also been shown to promote neuroplasticity, an important neuronal process that entails structural and functional brain adaptations in response to changes in environmental conditions. A key neurotrophin that promotes neuroplasticity is the brain-derived neurotrophic factor (BDNF), which is usually found in abnormally low levels in various psychiatric and neurological disorders. Meditation has been shown to increase the levels of BDNF, thus promoting neuronal development, survival and plasticity, which in turn contribute to restoring the normal functioning of brain networks.

In sum, there is emerging evidence that mindfulness meditation might trigger neuroplastic changes in brain regions involved in the regulation of emotion and cognition. Although, as mentioned earlier, these studies often suffer from low methodological quality and present with speculative post-hoc interpretations, this is quite common in a new field of research. Thus, further research needs to use longitudinal, randomized and actively controlled research designs and larger sample sizes, as well as to concentrate on the biological factors implicated in mental health, in order to advance the understanding of how mindfulness meditation interacts with the brain. If supported by rigorous research, the practice of mindfulness meditation might be a promising therapeutic approach for clinical disorders, such as depression, and might facilitate the cultivation of a healthy mind and improved well-being.

For the readers interested in the effects of meditation on depression, please visit my article The biological implications of meditation practices in the treatment of depression.

References

  • Brandmeyer, T., Delorme, A., Wahbeh, H. (2019). Chapter 1 – The neuroscience of meditation: classification, phenomenology, correlates, and mechanisms, Editor(s): Narayanan Srinivasan, Progress in Brain Research, Elsevier, 244: 1-29. doi: org/10.1016/bs.pbr.2018.10.020
  • Brewer, J.A., Worhunsky, P.D., Gray, J.R., Tang, Y.Y., Weber, J., Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proc Natl Acad Sci U S A, 108(50):20254-9. doi: 10.1073/pnas.1112029108
  • Kabat-Zinn, J. (2003). Mindfulness-based interventions in context: past, present, and future. Clin Psychol Sci Pract 10:144–156
  • Heuschkel, K., & Kuypers, K.P.C. (2020). Depression, Mindfulness, and Psilocybin: Possible Complementary Effects of Mindfulness Meditation and Psilocybin in the Treatment of Depression. A Review. Front. Psychiatry, 11:224. doi: 10.3389/fpsyt.2020.00224
  • Raffone, A., & Srinivasan, N. (2010). The exploration of meditation in the neuroscience of attention and consciousness. Cognitive Processing, 11:1-7. doi: 10.1007/s10339-009-0354-z.
  • Tang, Y.Y., Hölzel, B.K., Posner, M.I. (2015). The neuroscience of mindfulness meditation. Nat Rev Neurosci, 16(4):213-25. doi: 10.1038/nrn3916
  • Zeidan, F., Johnson, S., Diamond, B., David, Z., & Goolkasian, P. (2010). Mindfulness meditation improves cognition: Evidence of brief mental training. Consciousness and Cognition, 19, 597-605. doi: org/10.1016/j.concog.2010.03.014.

Forced to suffer for science: From animal cruelty and experimental inefficiency to a change of perspective.

We, as scientists, have become desensitised to the pain, the distress and the physical and emotional damage that we inflict on laboratory animals. So much so, that we constantly find justifications for our cruel experiments in the goal of finding cures for the illnesses of our conspecifics, and in the rules and regulations that authorise these heartless procedures.

Despite ongoing widespread use of animal models in research, recently there has been extensive criticism on the state of drug development in psychiatry, calling for a switch from rodent behavioral pharmacology to mechanistic studies in cellular systems. In a recent paper, Heilig and colleagues argue that:

Overall, neuroscience has simply had very little impact on clinical alcoholism treatment. The situation is representative of a broader translational crisis in psychiatric neuroscience. Because translational failures in this area have been the rule rather than the exception, pharmaceutical industry has largely retracted from efforts to develop novel psychiatric medication. As a result, the utility of animal models in research on psychiatric disorders, including addiction, is also being questioned.

Heilig et al. (2019)

Caricature Cruelty

Several experimental paradigms employed by labs all over the world, for elucidating the mechanisms of mental disorders and for the development of new psychiatric drugs, consist of procedures that innevitably cause suffering to the experimental animals. From learned helplessness paradigms (forced swim and tail suspension), intended to model the symptoms of depression in humans, to neuropathic pain models, which involve nerve operations to induce chronic pain in rats or mice, as well as fear conditioning experiments, consisting of series of electric shocks on consecutive days, large numbers of laboratory animals across the globe are subjected to procedures at the end of which they are euthanized for histological analyses.

The two videos below illustrate two paradigms for learned helplessness in rodents – forced swim and tail suspension, respectively. Even for those unfamiliar with these methods, it is not hard to notice the amount of distress and fear the animals are forced to go through.

Another example, otherwise claimed to be minimally invasive and highly relevant for medication testing (Meinhardt and Sommer, 2015), is the post-dependent animal model, a model for medication development in alcoholism. It involves inducing dependence through repeated intermittent cycles of alcohol vapour exposure. In other words, rodents (usually, rats) are exposed every day, for several weeks or months, to cycles of intoxication with alcohol vapours, alternating with withdrawal, which ultimately result in compulsive alcohol intake, excessive alcohol seeking, hypersensitivity to stress as well as the development of an alcohol withdrawal syndrome, which better resemble human alcoholism.

Rats usually undergo 5 cycles of 14 (sometimes, 16) hours of forced exposure to alcohol vapours, separated by 10-hour periods of withdrawal and an additional 58 hours at the end of each weekly cycle. These cycles take place over many weeks. As a result of severe alcohol intoxication, some rats die during the experiment. At the end of the last alcohol exposure, the rats that have survived are decapitated.

The sardonically humorous caricatures below, selected from (Meinhardt and Sommer, 2015), not only illustrate the procedure, but are at the same time indicative of a certain emotional detachement these scientists have developed from the rats they used in their experiments.

Mainhardt & Sommer (2015)

“Unavoidable” Suffering

Granted, there have been attempts at reducing the suffering of these poor animals. The three Rs – Replacement, Reduction and Refinement – reflect the scope to encourage alternatives to animal testing, as well as improving animal welfare in experiments where the use of animals is unavoidable. The 3Rs have been incorporated into the legislation governing animal use in many countries, in order to ensure that the use of animals in testing is as ethical as possible.

And yet, with paradigms such as forced swimming test, also known as the behavioural despair test, or the tail suspension test ( where the rodent is hanging from its tail upside down and is unable to touch the walls of the compartment), it is clear that there is a big discrepancy between what could be done and what is actually being done. We could move away from these cruel practices, which have been demonstrated to be misleading and offer little understanding on the mechanisms behind psychiatric conditions, and, instead, resort to alternative strategies, which have the potential to set research on a path of true breakthroughs in psychiatry (as it is being presented in a later section). However, most papers focused on schizophrenia, anxiety, depression, Alzheimer’s disease, addiction etc. rely on experiments which would make the skin of the more sensitive of us crawl, and those with a tougher skin reconsider their academic career (such as switching to cognitive neuroscience and human-based studies only, in my case).

It is also important to remember that, not only the procedures themselves cause pain and suffering to the experimental animals, but often times the side-effects of the medications being tested on them and the behavioral tests they are being used in result in long-term health consequences – for instance, postdependent alcoholic rats end up developing peripheral secondary osteoporosis.

When suffering exceeds a certain limit, the animals are usually euthanized. What a great life these creatures must have, given that one of the best solutions to end their pain is premature death…


Rats empathise with other helpless rats

Although we all know that “animals have feelings too”, we are still far from understanding to what extent animals actually feel. In humans, for instance, pain and consciousness are tightly linked. We do not yet know which animals have consciousness and what (if anything) that consciousness might be like.

That being said, a study from 2011 demonstrated that rats exhibit emotional responses and empathy. In their experiment, Bartal and colleagues showed that when a free rat occasionally heard distress calls from another rat trapped in a cage, it learned to open the cage and released the other animal even in the absence of a payoff reunion with it. The free rat would even save a chocolate chip for the captive.


The presence of a rat trapped in a restrainer elicits focused activity from his cagemate, leading eventually to door-opening and consequent liberation of the trapped rat. (Science/AAAS).

This experiment clearly shows that rats, and possibly other animals as well, are capable of complex emotional experiences, previously only attributed to humans (more studies should be done to investigate this fascinating and important topic). Alas, in the absence of a deep understanding of the animal psyche, and moreover, with clear indications that animals possess the capacity to feel almost to the same extent as us humans do, we still continue to abuse them in our cruel experiments.


The issues with animal models

Valid disease models do not exist for psychiatric disorders.

Hyman (2012)

On the rodent models based on learned helplessness, Hyman went on to argue that:

Forced-swim and tail suspension tests do not even model the therapeutic action of antidepressants, because in those rodent screens a single dose of antidepressant is active, whereas in dependent patients, antidepressant drugs require weeks of administration to exert a therapeutic effect.

Hyman (2012)

In fact, given that most psychiatric diseases are heterogenous and polygenic, often times animal behavioral models have turned out to be misleading. Shockingly, only 8% of the CNS drug candidates developed between 1993 and 2004, which reached initial human testing, were approved to be used as medication. The main drawbacks of these drugs were the toxicity discovered in late-stage clinical trials, along with the inability to demonstrate efficacy. Not to mention the serious side effects these drugs produce in humans, such as weight gain and metabolic derrangements.

Animal models, albeit useful for some translational investigations and for basic studies in neuroscience, present various limitations:

  • Lack of molecular and neural circuit-based characteristics, which are required for molecular studies of psychiatric diseases.
  • The construction of transgenic mice is too slow and expensive.
  • Regarding non-human primates, the challenges involve cost, less well-developed technologies as well as ethical barriers.
  • When it comes to invertebrate models or zebrafish (extensively used in translational research), evolutionary distance poses huge obstacles in translational psychiatry, although they could be useful in the initial molecular investigations of the functions of risk alleles emerging from genetic studies.

Given the above-mentioned drawbacks of relying on animal models to develop psychiatric treatments, major pharmaceutical companies have already decided to move away from these old-fashioned approaches. Now, the question remains, what is there to do in the future?


Adopting new strategies in psychiatric research

Science needs to move forward and find better methods to study the highly complex mechanisms underlying psychiatric diseases, in order to allow for truly efficient drugs and therapies to be developed. As mentioned earlier, animal-based studies have more often than not failed to identify pharmaceutical compounds with positive outcomes in humans.

Over the last half-century, despite the identification of several antipsychotic and antidepressant drugs, alongside the discovery of various neurotransmitters, receptors and transporters involved in mental illnesses, objective diagnostic scans are scarce, and, surprisingly, only a handful of validated molecular targets have been established.

Luckily for us, there are several alternative solutions, which are already being seriously considered by various laboratories and drug companies, as listed below:

  • DNA sequencing, which is nowadays much cheaper than it used to be (by 1 million-fold), makes it possible to analyse large number of subjects, in the attempt to identify genes involved in the heterogenous, polygenic psychiatric disorders.
  • Large scale studies of gene function, epigenetics, transcriptomics and proteomics would contribute to the understanding of pathogenesis.
  • Optogenetics, a technology with increasing popularity in neurobiology, allows researchers to activate or inhibit single cell types, thus detecting which circuits are specific to certain disorders.
  • Human neurones derived directly from skin fibroblasts and blood cells in vitro, or generated from human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) in vitro.
  • These above-mentioned tools can be combined with electrophysiological and neuroimaging data from humans, which can indirectly reveal abnormal functioning of widely distributed circuits.

What psychiatric research needs is to be able to accurately model molecular mechanisms of disease, instead of relying on behavioral results. Since I already mentioned large-scale genetic as well as epigenetic strategies, it is fair to admit that such studies require suitable living systems in which experiments can be conducted (given that the living human brain is not accessible, and that postmortem studies have limitations when it comes to functional analyses). Although, in some circumstances, animal behavioral experiments can help in elucidating treatment options, conclusions ought not to be based on modelling disease symptoms, as these can be misleading and often fail to translate into human psychopathology. Moreover, symptoms change over time and depending on the context, and are based on subjective rating scales, making the comparison between human and animal conditions difficult.

The solution is plain and simple – scientists and pharmaceutical companies must, first of all, unanimously and once and for all come to terms with the fact that the efforts based on cruel animal studies have been of too little avail to justify their continuation. Instead, a new strategy must be incorporated by the scientific community in psychiatric research, which should carry on from cell-based models and established molecular mechanisms to early human trials, skipping the intermediate step of animal behavioral models.

To end on a cheerful note, here is a heartwarming video which proves there is hope that the future could look bright for laboratory animals if people are willing to start making a change:


Special thanks to my mom for insightful comments and for her constant support, and to Gasser Elmissiery for inspiring discussions and for his contribution to creating the featured image.

References

  1. Bartal, I. B.-A., Decety, J., & Mason, P. (2011). Empathy and Pro-Social Behavior in Rats. Science334(6061), 1427 LP – 1430. doi:org/10.1126/science.1210789
  2. Haaranen M, Scuppa G, Tambalo S, Järvi V, Bertozzi SM, Armirotti A, Sommer WH, Bifone A, Hyytiä P. (2020). Anterior insula stimulation suppresses appetitive behavior while inducing forebrain activation in alcohol-preferring rats. Transl Psychiatry. 10(1):150. doi: 10.1038/s41398-020-0833-7
  3. Hansson AC, Koopmann A, Uhrig S, Bühler S, Domi E, Kiessling E, Ciccocioppo R, Froemke RC, Grinevich V, Kiefer F, Sommer WH, Vollstädt-Klein S, Spanagel R. (2018). Oxytocin Reduces Alcohol Cue-Reactivity in Alcohol-Dependent Rats and Humans. Neuropsychopharmacology. 43(6):1235-1246. doi: 10.1038/npp.2017.257
  4. Heilig M, Augier E, Pfarr S, Sommer WH. (2019). Developing neuroscience-based treatments for alcohol addiction: A matter of choice? Transl Psychiatry. 9(1):255. doi: 10.1038/s41398-019-0591-6
  5. Hyman SE. (2012). Revolution stalled. Sci Transl Med. 4:155cm11
  6. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron. 73(3):553-66. doi: 10.1016/j.neuron.2011.11.030
  7. Meinhardt MW, Sommer WH. Postdependent state in rats as a model for medication development in alcoholism (2015). Addict Biol. 20(1):1-21. doi: 10.1111/adb.12187
  8. Wahis, J., Kerspern, D., Althammer, F., Baudon, A., Goyon, S., Hagiwara, D., … Charlet, A. (2020). Oxytocin Acts on Astrocytes in the Central Amygdala to Promote a Positive Emotional State. BioRxiv, 2020.02.25.963884. doi:org/10.1101/2020.02.25.963884